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1. INTRODUCTION AND NOTATION

Let (n, sf, P) be a probability space and 0 <s < 00. Denote by
Lln, sf, P) the system of all equivalence classes of sf-measurable functions
X: n -+ iR with IIXlls := [f IXls dPj!/S < 00. For s> I the space Ls(n, sf, P)
endowed with the norm 1IIIs is a uniformly convex Banach space.

Let Y c sf be a a-lattice, i.e., a system of sets which is closed under
countable unions and intersections and contains 0 and n. A function X:
n -+ iR is Y-measurable if {X> a} E Y for all a E IR. Denote by LlY) the
system of all equivalence classes in Ls(n, sf, P) containing an Y
measurable function. Then Ls(Y) is a closed convex set. Let
X E Ls(n, sf, P); an element Y E Ls(Y) is called a conditional s-mean of X
given the a-lattice Y, if

IIX - Ylls = min{IIX - 211s: 2 E Ls(Y)}'

For s > I the uniform convexity of L s guarantees existence and uniqueness
of a conditional s-mean of X given Y, denoted by P';X.

The above minimization problem is very important, since it allows one to
treat approximation problems under order restrictions. For instance, let P be
a probability measure on the Borel-field IBn of the n-dimensional Euclidean
space IR n. Let.L be the family of all functions Y E L s(lR n, IBn, P) which are
monotone nondecreasing in each component. Define Y := {C E IBn : X E C,
X ~ Y ~ Y E C}, where X ~ Y means Xi ~ Yi for all components. Then:£' is a
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a-lattice and 1 is the system of all ~-measurable Y E Ls(1R n, IBn, P). Hence
for each X E Ls(lRn, IBn, P) the conditional s-mean of X given ~ is the
unique function which is monotone nondecreasing in each component such
that the II lis-distance from X is minimal among all functions which are
monotone non-decreasing in each component.

For s = 2, approximation problems of this type are highly relevant to the
theory of isotonic regression. Illuminating examples and the broad theory of
isotonic regression can be found in the book of Barlow et al. [3]. Although
much work has been done for the case s = 2-the statistical inference under
order restrictions-little is known for the case s *' 2.

The concept of conditional s-means given a a-lattice was introduced in
Brunk [8]. For s = 2 it is the usual conditional expectation given a a-lattice,
defined on L 2 (see [5 D. If ~ is a a-field one obtains the s-predictors in the
sense of Ando and Amemiya (see [1 D, which coincide for s = 2 with the
conditional expectations.

The theory developed here traces back to Kolmogoroff [13] and Wiener
[20], it is intimately related to Wald's decision theory and plays an
important role in Non-linear Prediction, Filtering, Regression and Bayes
Estimation.

In a forthcoming paper we apply this theory to define and estimate a
"natural" median (Le., a "reasonable" selection of a median). At first we
collect some properties of P; on L s and prove an integral inequality for the
conditional s-means (Theorem 2.11.) which is essential for the further
considerations (see Section 2).

In Section 3 we extend the operator P; from L s to L s _I as the unique
operator preserving the property of monotone continuity. An example shows
that even for ~ = {0,.o} a monotone continuous extension to larger spaces
L r (r < s - 1) is not possible in nearly all cases.

In Section 4 we show that p;nX converges P-a.e. to P'{ooX if X E L s_1 and
the a-lattices y;, increase or decrease to the a-lattice~rf)' This result contains
and extends other results in this direction. For s = 2 and a-fields it is a
classical martingale theorem and yields a result of Brunk and Johansen [9],
for s *' 2 and a-fields it extends a result of Ando and Amemiya [1].

In Section 5 we prove maximal inequalities, Le., inequalities for
P{SUPneN Ipy"XI > a} and f sUPneN IP;'Xlr dP. Our inequalities applied to
s = 2 and a-fields yield the classical maximal inequalities; applied to s *' 2
and a-fields they lead to much sharper maximal inequalities than those of
Ando and Amemiya (see [1 D. For a-lattices they seem to be the first results
in this direction.

In Section 6 we start with a characterization result for conditional s-means
with respect to a-fields (Theorem 6.1). This result, applied to s = 2, yields the
characterization results for classical conditional expectations of Bahadur [2],
Douglas [10], Moy [15] and Pfanzagl [17]. Then we characterize
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conditional s-means with respect to a-lattices (Theorem 6.4). For s *- 2 this is
the first characterization result of conditional s-means given a-lattices. For
s = 2 we prove a further characterization result (Theorem 6.3) which
contains Dykstra's [11) characterization for conditional expectations given a
a-lattice.

2. PROPERTIES OF pt IL s

Let (.0, sf, P) be a probability space. During this section let Sfl c sf be a
fixed a-lattice and 1 <s < 00.

The conditional s-mean T = p{: L s -+ L s has, according to Brunk [8), the
following properties

T is idempotent; i.e., T(TX) = TX;

T is positive homogeneous; i.e., T(aX) = aTX, a ~ 0;

Tis translation invariant; i.e., T(X +b) = TX +b, bE 18,

and fulfills

J(X - TX)§.:::.1.TX dP = 0;

(2.0)

(2.1 )

(2.2)

(2.3)

J(X-T~ZdP<O if Z E Ls(Sfl), (2.4)

where a§.:::.1. = lal s -
I sign a for a E IR.

Relation (2.4) aplied to Z == +1 and Z == -1 implies that

Tis s-expectation invariant; i.e., J(X - TX)~ dP = O. (2.5)

Using that XS---=.! TX ~ (X - TX~TX with > if TX *- 0, we obtain from
(2.3)

T is s-strictly monotonic at 0; i.e., (2.6)

Jxs---=.! TX dP > 0 for TX*- O.

As T = P{ is a nearest point projection onto a closed convex set of the
uniformly convex space L s it is well known that

T is continuous in the norm topology of L s • (2.7)
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Brunk [8] has shown that a <, X <, b implies a <, TX <, b. We show that

T is monotone. (2.8)

Let X <, Y and define Z 1 = TX 1\ TY, Z 2 = TX V TY. Applying
Lemma 7.2(iii) pointwise to a = Y, b = TY, C = X, d = TX we obtain by
integration

II Y - TYII~ + IIX - TXII~ ~ II Y - Z211~ +IIX - Zlll~·

Since Z l' Z 2E L l~?) we obtain II Y - TYlls = II Y - Z 211s and hence
Z2 = TY; i.e., TX <, TY.

From (2.7) and (2.8) we obtain that

T is monotone continuous; i.e., (2.9)

X n i X (Xn 1X) implies TXn i TX (TXn 1TX).

Let if:= {C: C E.£f} be the dual a-lattice of .£f. Since Ls(.£f) = -Ls(if) it
follows directly from the definition of s-means that

XEL s ' (2.10)

Now we prove an integration inequality which is an important tool in the
following sections. For s = 2 this was proven in [3, p.342] by other
techniques. Denote by IS the Borel-field of IR.

THEOREM 2.11. Let ({J: IR ~ [0,(0) be IS-measurable and Z: n ~ IR be
.£f-measurable. Then we have for all X E L s

f (X - r{xf=lZ({J ° P;X dP <,0

if the integral exists.

Proof W.l.o.g. we may assume that Z is bounded. By the usual
techniques it can be seen that it suffices to prove the assertion for non
negative bounded functions ({J with bounded derivative. Let such a ({J be given
and M:= SUP/Eli I({J'(t)1 < 00.

(i) We prove the assertion for Z = Ie with C E.£f:

Let Ya := r{X + (aIM)qJ ° P;X, 0 <, a < 1. Then

Ya='IIaOP;X,

where 'IIa(t):= t + (aiM) ({J(t), t E IR, 0 <, a < 1.

(1)
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Since lfIa: IR ~ IR is monotone increasing, we obtain from (1) that

Ya is .sf-measurable for all 0 ~ a < 1.

Define
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(2)

Za := P:;X + (aiM) Id 0 P:;X, O~a<1.

Since qJ ~ 0 we obtain with (2) for all bE IR, 0 ~ a < 1

and hence

Za is .sf-measurable for all 0 ~ a < 1.

The function

(3)

O~a<l

attains its minimum at a = 0, because Zo = P:;X and Za E Ls(.sf) for all
a E [0,1). Hence

o~ g'(O) = -(sIM)f (X - P;X)§.=lld 0 P;X dP,

which implies the assertion for Z = 1c.

(ii) The assertion holds for all non-negative bounded .sf-measurable
functions by (i), since every non-negative .sf-measurable function is the
monotone limit of non-negative .sf-measurable simple functions.

(iii) Now let Z be .sf-measurable and bounded. Since Z = Z+ - Z-, it
suffices, according to (ii), to prove that

-f (X - P:;XpZ-qJ 0 P;X dP ~ O. (4)

The function lfI(t) := qJ(-t), t E IR, is a non-negative bounded IS-measurable
function. Hence (4) is fulfilled if we show

(5)

Let !/J = {C: C E.sf} be the dual lattice of .sf. Since Z- is !/J-measurable
and -P:;X=P;(-X) by Property2.1O, (ii) applied to the a-lattice!/J yields
(5).
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3. EXTENSION AND PROPERTIES OF Y;/L S _ 1

Up to now the operator P; is defined on the domain L s • For s = 2 it is
known that pi can be extended from L 2 to L I. It is our aim to extend for
general s > I the conditional s-mean P; as a monotone continuous operator
from L s to larger spaces L" more exactly to choose r as small as possible.
For instance, can we always extend the conditional s-mean from L s as a
monotone continuous operator mapping L 1 into L 1 ?

It turns out that we can extend P; from L s to L s _ 1 but, even in extremely
simple cases, not beyond L s _ , • This shows, for instance, that for s > 2 we
cannot extend to L 1 but for I < s < 2 we can extend even beyond L 1. We
write P;/L in order to indicate that P; is defined on L c L s_ 1 •

DEFINITION 3.1. (i) Let l?S_1 be the system of all XELs_,(fl,d,P),
which are bounded from below by a function of L s. For X E l? s _ I define

Y;X:= lim P;(X/\ n).
nEN

We remark that this limit exists since P;/L s is monotone and X /\ n,
n E IN, is a nondecreasing sequence in L s • It is easy to see (use Property
(2.9)) that P;;l?S_1 is a monotone extension of P;/L s •

(ii) For X E L s _ , define

Y;X:= lim P;(XV (-n)).
nEN

We remark that this limit exists since P;'1l?S-1 is monotone and XV (-n),
n E IN, is a non-increasing sequence in l?S_I. Since it turns out that P;;l?S-1
is monotone continuous (this is proven in Theorem 3.2), P;;L S - 1 is an
extension of y;/l?s_1 and hence of P;;Ls •

THEOREM 3.2. Let S£? c d be a a-lattice and I < s < 00. Then the
operator P;;L s _ 1 has the following properties:

(PO) P'{' maps L s _ , into L s _ p

(PI) P'{'/L s - , is idempotent,

(P2) P'{'/Ls - , is montone,

(P3) P'{'/Ls - , is positive homogeneous,

(P4) P'{'/L s-I is translation invariant,

(P5) P'{'/L s- , is monotone continuous,

(P6) P'{'/Ls - , is s-expectation invariant,
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(P7) f (X - P'{xy-=-1ZqJ 0 P'{X dP ~ 0, if X E L s _ I' Z: .Q --+ IR is yJ

measurable, qJ: IR --+ [0, 00) is B-measurable and the integral exists,

(P8) f(X-P'{X)!=.lqJoP'{XdP=O if XEL s_I' qJ: IR-+IR is B
measurable and the integral exists.

Proof We prove the properties above for P':!f2s _ l , using the
corresponding properties of P':!L s' Using the then proven properties of
p:t/f2 s - l , one obtains in a similar way the stated properties of P':!L s _ , '

(PO) Let X E f2 s _ I ' Then X n := X An E L s ' As P':!Ls is s-expectation
invariant (see Property 2.5) we obtain

(I)

Since (X - p;xn)!=.ll (X - P;X)!=.l, (2) implies

o~ P[(X - P;X)!=.l] < 00

n E IN (2)

and hence X - P;X E Ls _ 1 ' As LS _ 1 is a linear space and X E L s _ p conse
quently P;XEL s _ , ' Since X~ YEL s implies P;X~P;Y, we get
P;XE f2 s _ I '

Property (P 1) follows directly from (2.0) and the definition of
P;/f2 s _ I '

Property (P2) follows from (2.8) and the definition of P;/f2 s _ I '

Property (P7) W.l.o.g. we may assume that Z is bounded. By the usual
techniques it can be seen that if suffices to prove the assertion for non
negative, continuous and bounded functions qJ. Let now X E f2 s _ 1 and
X n := X A n. Then X n E L s and therefore Theorem 2.11 implies

n E IN.

As qJ is continuous, qJ 0 P;Xn --+ qJ 0 P;X by definition of P;X. Since
P;X E L S - 1 according to (PO), it is easy to see that

n E IN,

is bounded by an integrable function. Hence the Theorem of Lebesgue
implies the assertion.
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Property (P6) follows directly from (P7).

Property (PS) W.l.o.g. we prove only the decreasing case. Let
XnELs_1 withXn lXE1?s_I' Then by (P6)

f(X _pf/'X ~dP=On s nJ , n E IN. (3)

By (P2) we obtain P;X ~ P;Xn~ r;XI. Hence the Theorem of Lebesgue
implies by (3)

( )

S-If X - ~i~ P;Xn - dP=O. (4)

As f(X-r;Xy..=1dP=O and P;X~limnENP;Xn' (4) implies that
P;X = limnENP':'Xn.

Properties (P3) and (P4) follow immediately from (PS), using the
corresponding properties of P':'lLs (see Section 2).

Property (PS) follows from (P7) applied to rp+ and rp- with Z =1 and
Z=-1.

The preceding theorem shows that there exists a monotone continuous
extension of P;/L s which maps L s-I into L s _ I' The following remark shows
that, even for Y; = {0, n}, such an extension is not possible for any larger
space L r (r <s - 1).

Remark 3.3. Let (n,.#, P) be a probability space and 1 < s < 00.

Assume that L r =1= L s- 1 for some 0 < r <s - 1. Let X ~ 0 with
X E L r - L s _ 1 be given and choose Y; = {0, n}. We shall show that each
monotone continuous extension of P;/Ls to L r necessarily maps X to the
function =00 E L r •

Let X n :=X /\ nELs' Then X n TX. If there exists a monotone continuous
extension from r;/Ls to L r, then cn= P;Xn TP;X = c. Assume that C < 00.

Since r;/L s is s-expectation invariant we have

Since X n Tx, this implies O~f(X-c)!=.1.dP>-oo. Hence XEL s_l'

contradicting our assumption.
For each X E L S - 1 we give now a characterization of the conditional s

mean r;X as the unique Y;-measurable function fulfilling two integral
inequalities. For the case s = 2 this is known for X E L 2 (see [3]); it seems
to be unknown even for s = 2 if X ELI .
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THEOREM 3.4. Let X E L S_1and qJ be a strictly increasing function such
that qJ 0 P;X is bounded. Then Y = P;X if and only if Y E L s-I (.sf'), qJ 0 Y is
bounded and

(i) f (X - Yy..=-!-Z dP ~ 0 for all bounded .sf'-measurable Z;

(ii) f (X - Yy..=-!-qJ 0 Y dP = O.

Proof The direction "only if' follows from (P7) and (P8) of
Theorem 3.2. For the converse direction it suffices to prove that if Y 1 ,

Y2 E LS~I(.sf') are two functions fulfilling (i) and (ii), then Y1 = Yz.
By (ii) we have

j= 1,2.

Since qJ 0 Yj , j = 1,2 are bounded .sf'-measurable functions we obtain,
together with (i),

Since qJ is increasing, it is easy to see that

Hence qJ 0 Y 1 = qJ 0 Y2 P-a.e., whence Y1 = Y2 P-a.e.

COROLLARY 3.5. Let XEL s_1' Then Y=P;X if and only if
YELs_1(.sf') and

(i) Jc (X - Yy..=-!- dP ~ 0 for all C E .sf';

(ii) f,Y?a) (X - Yy..=-!-dP=Ofor all a E IR.

Proof The direction "only if' follows from (P7) and (P8) of
Theorem 3.2. For the converse direction we have to prove (i) and (ii) of
Theorem 3.4.

Since v(B) := f (X - Yf=-llB 0 Y dP, B E IB, is a signed measure which is
zero on the system {[a, CX»), a E IR} according to (ii), it is zero on IB also.
This implies (ii) of Theorem 3.4 even for all measurable functions qJ, for
which the integral in (ii) exists. Since every non-negative bounded .sf'
measurable function is the monotone limit of non-negative .sf'-measurable
simple functions, (i) implies, that condition (i) of Theorem 3.4 holds for all
non-negative, bounded, .sf'-measurable functions Z. Let Z be a bounded .sf'-
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measurable function. Then Z +a is a non-negative bounded Y'-measurable
function for suitable a and hence

f (X - yP-!-(Z + a) dP ~ O.

Consequently we obtain (i) of Theorem 3.4.
Now we give some further properties of the extended p'{. Since

Ls(Y') = -Ls(I?), we obtain from Property (P7) of Theorem 3.2 with
Z=-I D that for XEL s _ 1

(P9) fCnD(X-P'{Xy-=J-dP~O if DEI?, CE(P'{X)-IIB, where IB
denotes the Borel-field of IR.

Using the monotone continuity of P'{jL s _ l' Property 2.10 implies

(PIO) i;,x=-p'{(-X), XEL s_1 '

Since X E L S _ 1 and Y = P'{X fulfill (i) and (ii) of Corollary 3.5, we obtain
for each a ~ I that Xo= X - aP'{X and the Y'-measurable function Yo =
(l-a)P'{X fulfill (i) and (ii), too. Hence Corollary 3.5 implies:

(P 11 ) p'{(X - aP'{X) = (1 - a) P~;X, a ~ I, X E L s_1 •

Since P'{ is monotone we have P'{(-IX!) ~ P'{X ~ P'{IXI. Hence (PIO)
implies

(PI2) IP'{XI ~max(P'{IXI,P;IX!), XEL s _ 1 '

We remark that for a-lattices it is not true that IP'{XI ~ P'{IXI; this can
be seen by simple examples even in the case s = 2. Using (P2) and (P8) it is
easy to see that for each interval Ie IR

(P 13) X E I P-a.e. implies P'{X E I P-a.e.

Now we prove a convexity inequality for conditional s-means.

(P 14) Let Ie IR be an interval and qJ: I ..... IR be a non-decreasing
continuous and convex function. If X, qJ 0 X E L s_I and X E I P-a.e. then

qJ 0 P;X ~ P'{(qJ 0 X).

Proof Since qJ is continuous and convex there exist an' bnE IR, n E IN,
such that

qJ(X) = sup (anx +bn)
nEN

for all x E I.

Since qJ is non-decreasing, w.Lo.g. an ~ O. From (P2), (P3), (P4) and (P 13)
we obtain

P'{(qJ 0 X) ~ sup anP'{X + bn= qJ 0 P'{x.
nEN

Q.E.D.
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Finally we prove for each r ~ s - 1

5/(PIS) XELr=?PsXEL r.

According to (PI2), we may w.l.o.g. assume that X ~ O.
X r/(S-I)EL s_l' (PO) implies P'{'(Xr/(S-Il)EL s_1' As, by

(pY'x)r/(S-I) &: pY'(Xr/(S-I») E L we obtain P5/X E L
s -...::::: s 5-1' s r"

4. CONVERGENCE A.E. OF P,:"X

209

Since
(PI4)

In this section we give a general a.e. convergence theorem for conditional
s-means p'{'nX for all X E L s- 1' For the case s = 2, it is a result of [9]. For
the special case of a-fields and for X E L S this was proven in [1]. The
techniques used here, are related to the methods of Sparre et al. [18] and
Brunk and Johansen [9].

If Sf" c .Yf', n E IN U {oo}, are a-lattices, Sf", n E IN, increases [decreases]
to Y'oo if Sf" c Sf" +1[Sf" ::J Sf" + I] and Y'oo is the a-lattice generated by

UnENSf,,[Y'oo = nnENSf,,]·

THEOREM 4.1. Let (n,.Yf', P) be a probability space and 1 < s < 00. Let
Sf" c.Yf', n E IN, be a-lattices increasing or decreasing to the a-lattice Y'oo.
Then

P-a.e.,

for all XELs_1(n,.Yf',p).

Proof We prove only the decreasing case, which is somewhat more
complicated. The proof for the increasing case runs similarly.

Let X n = P'{'nx, n E iN := IN U {oo}. Let 5?,,:= {t: C E Sf,,}. According to
properties (P7) and (P9) of Section 3, we have

and

f (X - a y.=-! dP ~ 0
(Xn<alI'C n

f (X - fly-=1- dP ~ 0
(X n >lllnD n

(1)

(2)

Define K= limnENXn and X = limnENXn; then K,X are Y'oo-measurable. Let
C E Y'oo and a E IR be fixed and choose a sequence 8 m 1o. Define for
m~n~r
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According to (1), we. have
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J (X - (a +em)p-ldP ~ O.
c::',r

(3)

Since L~=m C'::,r = en {infm";;i.;;rXi <a + em} =: e~ and e~ rr~oo em :=
en {infi;;>m Xi <a + em} we obtain, from (3),

f (X - (a + em»E.=..! dP ~ 0,
em

mE IN. (4)

Since 1em ~me IN 1c n IK" aI' (4) implies, using the Theorem of Lebesgue

J (X-a~dP~O,
IK" al n e

In the same way we obtain

L (X-b~dP~O,
IX;;>blnn

if a E IR, e E ~oo • (5)

(6)

Now we show, using the relations (1), (2), (5), (6) that

P-a,e.

This directly implies the assertion. We prove only X 00 ~ X P-a.e. The proof
for X ~ X 00 runs similarly.

To prove X r:t:J ~ X P-a.e., it suffices to show that for all a, b E IR with
a < b the set

has P-measure zero. Relation (2) applied to n = 00 and D oo = {X ~ a} E!foo
yields

f (X-b~dP~O.
E

Relation (5), applied to e = {Xoo > b} E ~oo yields

f (X -a~dP~O.
E

Since (X - ap-l > (X - b)E.=..! on E, (7) and (8) imply peE) = O.

(7)

(8)
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5. MAXIMAL INEQUALITIES AND NORM CONVERGENCE OF P'{nX

211

In this section we prove two maximal inequalities and give an application
to norm convergence.

THEOREM 5.1. Let (f1,.#, P) be a probability space and 1 <s < 00. Let
y:;, c.#, n E N, be an increasing or decreasing sequence of (J-lattices. For
non-negative X E L s _ I we have

a> O.

Proof Let Xn = p!{'nX, n E fl\l. It suffices to prove for each n E N that

a> O. (1)

As for decreasing sequences Sf'" , n E N, the finite sequence y:;" !/,,_I ,... ,..v; is
increasing; it suffices to prove (1) for the increasing case.

At first we show that

J (X-aF!dP~O,
(max,,,i,,nXt>a)

a> O. (2)

Let Ai = {XI ~ a,,,,,Xi_1 ~ a, Xi> a}, i = 1,..., n. Since Ai = {Xi> a} nD i,
where D; E .:2; we obtain from Property (P9) of Section 3

f (X-a~dP~ J (X-Xi~dP~O.
Ai Ai

As L:~=IAi = {maxI<i<;nXi >a}, this implies (2). Applying Lemma 7.2(i)
and (ii) pointwise to x =X(w) for all wE {maxl<i<;;nXi >a}, we obtain by
integration, using (2), inequality (1)

COROLLARY 5.2. Let (n,.#, P) be a probability space, 1 <s < 00 and
r> s - 1. Let Sf'" c.#, n EN, be an increasing or decreasing sequence of (J
lattices. Then we have for X E L r that

f sup IP'{nXl'dP~o. ur.sfIXl'dP,
neN

where ur•s = (2'S-21 [r/(r - s + 1)])'/(S-I) and 0 = 1 ifall Sf'" are a-jields or if
X is non-negative and 0 = 2 elsewhere.
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Proof. First we prove the assertion for X ~ O. We use the following well
known lemma [12, p. 231]:

If ¢, 1]: n -+ [0, 00] are J<f"-measurable with

P{I] > e}:::;;;(lje)! ¢dP forall e>O, (*)
(,,><1

then P[I]"]:::;;; [aj(a - 1)]" P[¢"] for all a> 1. Let 1]:= (SUPnENP:"nxy-l,
¢=2Is-2Ixs-1, e=aS-

1 and a=rj(s-l» 1. Then (*) is fulfilled
according to Theorem 5.1. Hence the lemma cited above implies the
assertion for X ~ O. Hence the assertion is true for a-fields and arbitrary
X E L" using IpYnXI :::;;; P{n IXI.

For a-lattices and arbitrary X E L, the assertion follows, because,
according to (P12) of Section 3,

sup IP';;'XI':::;;; sup (pr~ IXI)' + sup (p;'IXI)'·
'lEN 'lEN 'lEN

We remark that for the case s = 2 and a-fields we obtain in Theorem 5.1
and Corollary 5.2 exactly the classical maximal inequalities with the same
bounding constants. For a-fields y;, and X E L s Ando and Amemiya [1]
proved that

The constants as given by Ando and Amemiya are much larger than our
constants u,.s specialized to the case r = s. For s = 2 we have us.s= 4 and
as = 208 and for s > 2 there holds

Observe that 1:::;;;us.s=(2IS-2IsY/(S-I)-+00 with s-+oo. For a-lattices the
preceding results of this section seem to be the first in this direction.

COROLLARY 5.3. Let (n, J<f", P) be a probability space, 1 < s < 00 and
r ~ s - 1. Let y;, c J<f", n E IN, be a sequence of a-lattices increasing or
decreasing to the a-lattice s.foo ' Then for each X E L, we have

IIP.7'x-P;"'XII,~ O.
'lEN

Proof. According to Theorem 4.1 and Corollary 5.2 the assertion follows
for r> s - 1 by the Theorem of Lebesgue. For r = s - 1 it suffices,
according to Theorem 4.1, to prove that IPY.Xls- 1

, nEIN, is uniformly
integrable. Since IPY.Xls- 1

:::;;; (pY.lxly-l + (P?" IXly-1 and the sum of two
uniformly integrable sequences is uniformly integrable (use e.g. [4,
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Sf.Korollar 20.3, p. 90]), we may w.l.o.g. assume that X ~ O. Let X n= P "X,
n E IN. We obtain from Lemma 7.2(i) and (ii), applied pointwise for
wE{Xn>a} to a=Xn(w), x=X(w)--since flx">al(X-Xny-=-!dP=O
according to (P8) of Section 3-that

f XS-I dP,;:;:. 21s~21 f Xs~ 1 dPn ~ ,
IX">a) IX">a)

a> O. (+)

Since SUPnENP{Xn > a} -4a~oo 0 by Theorem 4.1, we consequently obtain
from ( + ) that X~ - 1, n E IN, is uniformly integrable.

6. CHARACTERIZATIONS OF PC:'

In this section we characterize the operators P; for a-fields and a-lattices.
We start with a characterization result for a-fields and arbitrary s > 1. For
s = 2 this leads to a characterization for classical conditional expectation
operators which is a common generalization of the results of Bahadur [2],
Douglas [10], Moy [15] and Pfanzagl [17].

THEOREM 6.1. Let I <s < 00 and s - I ~ r ~ 00. Let T: Lr(fJ, ~, P)->
Lr(fJ,~, P) be an operator which is

(i) homogeneous,

(ii) translation invariant,

(iii) idempotent,

(iv) monotone,

(v) s-expectation invariant.

Then there exists a sub-a-field g; c ~ such that TX = P:X for all
XEL r •

Proof Let g; := {A E ~: Tl A = IA}' Since T is homogeneous and tran
slation invariant, A E ~ implies TlA"= I - Tl A = I - IA = IA"' Hence g; is
a a-field according to Lemma 7.3(ii). Since T,~: L r -4 L r are monotone
continuous operators according to Lemma 7.3(i) and Property (PS) of
Theorem 3.2 it suffices to show that

for bounded X.

We remark that according to (i), (ii) and (iv) TX is bounded if X is bounded.
Applying (iv) of Lemma 7.3 to Z and -Z we obtain

f (X - TXy-=-!Z dP = 0

640/31/3-2
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Hence we can apply Theorem 3.4 with Y = TX and the strictly increasing
function tp(t) = t, t E IR. This yields TX =P;X for bounded X.

Easy examples show that none of the five conditions in Theorem 6.1 can
be omitted without compensation. Another characterization result for
conditional s-means given a a-field can be found in 114J.

In the case s = 2 s-expectation invariance of an operator T means
f TX dP = f X dP. Hence for s = 2 monotony and s-expectation-invariance of
T trivially imply that T is weak lillI-reducing; i.e.,

II TX - TYII I~ IIX - Y!!I if X ~ Y.

Furthermore each linear operator with II TXII I~ IIXII I is trivially weak 11111
reducing. Therefore the following corollary contains the characterization
results for conditional expectation operators given in [2), [10], [15] and,
[17].

COROLLARY 6.2. Let 1~ r ~ 00 and T: Lr(D,.s/, P) ~ Lr(D,.s/, P) be
an operator which is

(i) homogeneous,

(ii) translation invariant,

(iii) idempotent,

(iv) weak lilli-reducing.

Then there exists a sub-ajield g c.s/ such that TX =p-rX for all

XEL r •

Proof. According to Lemma 7.4 T is monotone and 2-expectation
invariant. Hence Theorem 6.1, applied to s = 2, implies the assertion.

The only characterization result, known to the authors, concerning a
lattices is the result of Dykstra [11] for the case s = 2. He shows that an
operator T: L 2(D,.s/, P) ~ L 2(D,.s/, P) which is

(i) positive homogeneous,

(ii) 111I2-reducing; i.e., II TX - TYlb ~ IIX - Y112'

(iii) idempotent,

(iv) monotone,

(v) 2-expectation invariant; i.e., f TX dP = f X dP,

(vi) 2-strictly monotonic at 0; Le., f XTX dP >°if TX"* °
is the conditional expectation operator Pi with respect to a suitable a-lattice
y:' c.s/.

We remark that Dykstra requires instead of (vi) a slightly stronger
condition, but he uses in his proof only condition (vi) [3, p. 322]. Dykstra
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furthermore gives an example showing that conditions (i}-(v) above are not
sufficient for his characterization result [3, p. 326].

In the characterization results for conditional expectation operators given
a a-field, only one integration condition besides algebraic conditions is used.
This is an advantage since the authors believe that algebraic conditions are
nicer and easier to verify than integration conditions. Dykstra's charac
terization result for a conditional expectation operator, given a a-lattice, uses
three integration conditions. The "strongest" of his integration conditions is
the property (ii), namely, II liz-reducing. In the following theorem we show
that II liz-reducing can be replaced by the algebraic condition translation
invariance. Furthermore monotony and 2-expectation invariance is weakened
to weak lillI-reducing. Since II liz-reducing and II liz-expectation invariance
imply translation invariance (see [3], Proposition 7.2, 2°, p.324), the
theorem below contains the result of Dykstra.

THEOREM 6.3. Let I ~r~ 00 and T: L r(D,.N",P)-4L r(D,.N",P)-4
Lr(D,.N", P) be an operator which is

(i) positive homogeneous,

(ii) translation invariant,

(iii) idempotent,

(iv) weak lillI-reducing,

(v) 2-strictly monotonic at 0 for X E L 00'

Then there exists a a-lattice If c.N" such that TX = pixfor all X E L r.

Proof Since according to (iv) T is lilli-continuous for monotone
sequences, it suffices to prove TX = pix for X E L oo • According to
Lemma 7.4 the operator is 2-expectation invariant and monotone and hence
according to Lemma 7.3 there exists a a-lattice If c.N" such that

J (X - TX)Z dP ~ 0 (I)

According to Theorem 3.4, applied to s = 2, X:= X - TX, Y = 0 and
q>(t) = t, (I) implies that

Furthermore we have

pi'(X - T(X)) = O.

T(X -piX)=o

(2)

(3 )

because T(X -PiX) E Loo(If) implies f (X - piX) T(X - piX) dP ~ 0
and (v) implies f (X - PiX) T(X - PiX) dP > 0 if T(X - PiX) =1= O.
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Now we shall show that
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(4)

According to Lemma 7.4, the operator T is lillI-reducing. Using (2), (3) and
the fact that Pi is IllIcreducing, too, we obtain:

IIP{XII I =IIX - (X -PiX)111 ~IITX - T(X -I1x)111 =IITXII I

and

II TXII I = IIX- (X - TX)/II ~ IIPfx -pf'(X - TX)III = IIPf'xII I ·

Hence (4) follows. Now (4) and translation invariance of T and pi imply
IlPiX-alll=IITX-alll for XEL ro , aEIR; i.e., flx-aIPI(dx)=
flx-aIP 2(dx) for aE IR, where PI is the distribution of pix and P z the
distribution of TX. Hence according to Lemma 7.5, PI = P z and therefore
especially

(5)

Now we obtain by (5) and (1), that

II TX - Pixll; = 2 f (Pf'X)Z dP - 2fTXP;X dp

= 2f (X - TX) p'{X dP ~ 0

and hence TX = Pf'X.
Dykstra's example cited in [3, p.326] (n={l,2}, P{l}=P{2}=~,

TX=X if X(1)~X(2) and TX(1)=X(2), TX(2)=X(1) if X(1»X(2)),
shows that conditions (i}-(iv) of Theorem 6.3 are not sufficient to charac
terize conditional expectations operators given a a-lattice. Now we give a
characterization result for conditional s-means, given a a-lattice. This is the
first characterization of the operator P; for s 01= 2 and a-lattices If.

THEOREM 6.4. Let 1 < s < 00 and s - 1 ~ r ~ 00. Let T: L r (n,.51', P)-+
L r (n,.51', P) be an operator which is

(i) positive homogeneous,

(ii) translation invariant,

(iii) idempotent,
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(iv) monotone,

(v) s-expectation invariant,

(vi) weak s-monotonic at 0; i.e., JX~TX dP ~ 0 for X E L oo with
TX ~ 0 and fulfills:

(vii) T(X - iTX) = iTX.

Then there exists a a-lattice i/ c..# such that TX = p'{X for all X E L r'

Proof According to Lemma 7.3(ii), (iii) we have that i/ := {A E..#:
Tl A = 1A } is a a-lattice and TX E Lr(i/) as T is idempotent. Since T, P'{:
L r -4 L r are monotone continuous operators, it suffices to show that

TX=pf£X
s for bounded X.

For this, it suffices to prove condition (i) and (ii) of Theorem 3.4 applied to
the bounded function Y = TX, Condition (i) of Theorem 3.4 is fulfilled
according to Lemma 7.3(iv). Since TX is bounded and i/-measurable,
Condition (ii) of Theorem 3.4 is fulfilled with qJ(t) = t if we show that

f (X- TX~TXdP~O.

Define inductively YI = i and Yn+ 1= (1 +Yn)/2. We prove by induction

T(X - Yn TX) = (1 - Yn) TX.

(*)

(**)

For n = 1 this is our Assumption (vii). Assume now that (**) holds for n.
Then

T(X - Yn+I TX) = T(X - Yn TX - jT(X - YnTX»

= 1T(X - Yn TX) = HI - yn)TX = (1 - Yn+ I)TX.

Hence (* *) holds for (n + 1). Let X ~ 0, then T(X - YnTX) =
(1 - Yn) TX ~ O. Hence, according to (vi) and (**),

O~f (X-YnTX~T(X-YnTX)dP

= (1 - Yn)' f (X - YnTX~TX dP;

i.e.,

f (X -YnTX~TXdP~O.



218 LANDERS AND ROGGE

As Yn ~ 1, we obtain (*) for bounded X ~ 0. As T is translation invariant we
obtain (*) for all bounded X.

We remark that conditions (i}-(vi) are even in the case s = 2 not sufficient
to characterize s-means. This can be seen from the just cited example of
Dykstra.

7. AUXILIARY LEMMATA

At first we prove a lemma characterizing a system of functions as a
system of if'-measurable functions where if' is a suitable a-lattice. This
lemma plays on analogous role for a-lattices as Lemma 3 in [171 for a-fields.

LEMMA 7.1. Let °<r~ 00 and 0=t=FcL/n,.5II',p). Assume that F
fulfills the following conditions:

(i) aX + fJ E F for X E F, a ~ 0, fJ E IR,

(ii) X 1\ Y, X V Y E F for X, Y E F,

(iii) X n E F, X E L r and X n i X or X n ! X imply X E F.

Let if' := {A E.5II': 1A E F}. Then if' is a a-lattice and F = Lr(if').

(ii), (iii) directly imply that if' is a a-lattice. Now we show Fe Lr(if'). Let
X E F be given then for each fJ E IR

Yn := [n(X -fJ) V 0] 1\ 1] i l(w:x(w»IlI'

As (i), (ii) imply Yn E F we obtain from (iii) that {w: X(w) > fJ} E if'; i.e.,
XE Lr(if').

Finally we have to show Lr(if') c F. Let X E Lr(if'). By (i) and (iii) we
may w.1.o.g. assume that X ~ 0. Since X E L r(if') we have

{w:X(w) ~ a} E if' and hence l(w:X(wl;;>al E F.

By (i) and (ii) this implies

X n :=sup l;n' l{w:x(Wl;;>{n}:v=O, 1,... ,n2
n ! EF.

As X n i X, hence X E F by (iii).
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LEMMA 7.2. Let 1 < s < 00. Then there hold the following inequalities
between real numbers:

(i) as- 1 + 2S- 2(x - ay..=-!- ~ 2s- 2x!=l if a ~ 0, s ~ 2,

(ii) as- 1 + (x - ay..=-!- ~ 22
-

sxs- 1 if a, x ~ 0, 1 < s < 2,

(iii) la - b V dis +Ic - b 1\ dis ~ la - bls+ Ic - dis if a ~ c.

Proof Dividing (i) by as- 1 it suffices to prove

f(z):= 1 + 2S
-

2(z - 1y..=-!- ~ 2S
-

2
Z!=l = g(z), z E IR. (*)

Since f(l) ~ g(l) and f'(z) ~ g'(z) for z ~ 1, (*) is true for z ~ 1, s> 2.
This directly implies that (*) is also true for z ~ O. If 0 <z < 1 use
differential calculus to show that h(z) = g(z) - fez) attains its minimum at
zo =! and he!) =O.

Inequality (ii) follows in the same manner.

Inequality (iii) follows using similar techniques.

LEMMA 7.3. Let 1 <s < 00 and s - 1~ r ~ 00. Let T: L,(fl, $, P)--4
Lr(fl, $, P) be a positive homogeneous, translation invariant, monotone and
s-expectation invariant operator. Then

(i) T is monotone continuous,

(ii) Y' = {A E $: Tl A = 1A } is a a-lattice,

(iii) L,(Y') = {X E L r: TX = X},

(iv) f (X - TXy..=-!-Z dP ~ 0 for all Z E Loo(~)' X E L r.

Proof (i) We show only that X n i X implies TXn i TX if X n , X E L r.
The decreasing case runs similarly. Since T is monotone the pointwise limit
Y := limn~oo TXn exists and fulfills Y ~ TX. As Tis s-expectation invariant
we obtain

and hence by the Theorem of Lebesgue

f(X-~dP=O.
Together with Y ~ TX and f (X - TXy..=-!-dP = 0 this implies

Y=TX.
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For (ii), (iii), let F:= {X E L r : TX = Xl. Since T is positive
homogeneous and translation invariant, condition (i) of Lemma 7.1 is
fulfilled. To prove condition (ii) of Lemma 7.1 let X, Y E F be given. We
show X V Y E F, the proof for X /\ Y E F runs similarly. Since T is
monotone we have

T(XV Y)~ TXV TY=XV Y.

As T is s-expectation invariant we have

o= f (X V Y - T(X V Y)p-! dP,

whence T(XV Y)=XV Y; i.e., XV YEF.
Condition (iii) of Lemma 7.1 follows from the monotone continuity of T.

Hence Lemma 7.1 implies (ii), (iii).
Now we prove (iv) if 0 ~ X ~I and Z = Ic for C E st'. Since T is

monotone we have

T(XId ~ TXl c '

As T is s-expectation invariant we obtain

0= f (Xl c - T(Xld).c! dP

~ f (Xl c - (TX) Id.c! dP

= f IdX - TXP-! dP.

As T is positive homogeneous and translation invariant we obtain (iv) for all
bounded X and Z = Ic ' C E st'. As T is continuous on monotone sequences
we obtain (iv) for all X E LlJli') and Z = Ic with C Est'. Since every non
negative st'-measurable function is monotone limit of st'-measurable simple
functions and since T is s-expectation invariant we obtain (iv).

LEMMA 7.4. Let 1~r~ 00 and T: L r (il,.JI1',P)-tL r (il,.JI1',P) be a
weak lilli-reducing, translation invariant operator with T(O) = O. Then Tis

(i) monotone,

(ii) 2-expectation invariant,

(iii) 1lllcreducing; i.e., II TX - TYII I ~ Ilx - YII I •
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Proof At first we show that T is 2-expectation invariant. Since TO = 0
we obtain that

if X ~ 0 or X ~ O. (1)

Now let X E LI(st") with 0 ~X ~ e. Since e~ ITXI + Ie - TXI we obtain
using (1) and translation invariance that

e~J[I TXI + Ie - TXll dP = II TXII I+ II T(X - e)111

~ IIXII I + lie-XIII =e.
(2)

Hence the two inequalities in (2) are equalities. The first of them implies
e= ITXI + Ie - TXI and hence 0 ~ TX ~ e, therefore the second implies
f TX dP = II TXII I = II XIII = f X dP.

Since T is translation invariant, 2-expectation invariance holds for all
bounded X. Since T is weakly lilli-reducing we obtain that

(3)

Let X E L I(st") be bounded from below. Then there exist bounded functions
X n with X n i X. Since f X n dP = f TXn dP, we obtain from (3)

IJX dP - JTX dP I= ~i~ IfX n dP - f TX dP I

= ~i~ IJ TXndP- JTXdP I

~ lim II TXn - TXII I = O.
neN

Hence f X dP = f TX dP for all X E L,(st") which are bounded from below.
Since each integrable function is a decreasing limit of integrable functions
which are bounded from below, we obtain in a similar manner that
f TX dP = f X dP for all X E L,(st"), i.e., (ii).

Now we prove that T is monotone. Let X, Y E L,(st") with X ~ Y. Since T
is 2-expectation invariant and weak lilli-reducing we obtain

f (Y -X)dP= f (TY - TX)dP~ flTY - TXI dP= IITY - TXII I

~ II Y -XIII = f (Y -X)dP.



222 LANDERS AND ROGGE

Hence we have equality, whence TY - TX = ITY - TXI; i.e., TX:::;; TY.
Since T is monotone and weak lilli-reducing, T is lillI-reducing:

II TX - TYII I :::;; II T(X V Y) - T(X /\ Y)III :::;; II X V Y - X /\ YII I = II X - YII [.

LEMMA 7.5. Let P" P2 be two p-measures on the Borel-field of R If

for all a E IR, then PI = P2 •

Proof It suffices to prove PI(-00, y] = P2(-00, y] for all y E R For all
e > 0 we have by assumption

f(Ix - yl-Ix - (y + e)l) PI (dx) = f(Ix - yl-Ix- (y + e)I)Pidx);

i.e.,

e[-PI(-oo; y] +PI[y + e, 00)] +f (Ix - yl-Ix - (y + e)I)PI(dx)
(y, y+d

= e[-Pi-co, y] +P2 [y + e, co)] +f (Ix - yl-Ix - (y + e)l)Pidx).
(y,Y+d

Divide bye> 0 and let e -. O. Then we obtain

and hence

Le., our assertion.
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